WORKSHEET – 1 CHAPTER 2

UNITS AND MEASUREMENTS

- In CGS system, the value of Stefan's constant is 5.67x10⁻⁵ erg s⁻¹ cm⁻²K⁻⁴. Write down its value in SI units.
- 2. Name at least seven physical quantities whose dimensions are $\ensuremath{\mathsf{ML}^2\mathsf{T}^{\text{-2}}}$
- 3. If m,v and c respectively denote mass,speed and velocity of light, then in the equation m= m₀($1 \frac{v^2}{c^2}$)^{$\frac{-1}{2}$}, m₀ has the dimensions of
- 4. State the number of significant figures in the following:
 a) 0.007 b) 2.64 x 10²⁴
- 5. If $(P + \frac{a}{v^2}) (V b) = RT$, where the symbols have their usual meanings, then $(\frac{a}{b})$ has a dimension of
- 6. The time of oscillation (t) of a small drop of liquid under surface tension (σ) Prove dimensionally that t $\propto \sqrt{\frac{\rho r^3}{\sigma}}$.
- 7. A physical quantity Q is given by Q = $\frac{A^2 B^2}{c^4 D^2}$

The percentage error in A ,B ,C,D are 1%, 2% , 4%, 2% respectively. Find the percentage error in Q.

- 8. If x = at + bt², Where x is in metre and t in hour, What will be the unit of a and b
- 9. The wavelength associated with a moving particle depends upon its mass m, its velocity v and Planck's constant h.Show dimensionally the relationship between them.

10.Check whether equation F.S = $\frac{1}{2}mv^2 - \frac{1}{2}mu^2$ is dimensionally correct, Where m is the mass of the body v is its final velocity, u its initial velocity, f is the force applied and S is the distance travelled.