WORKSHEET - 1 CHAPTER 2

UNITS AND MEASUREMENTS

1. In CGS system, the value of Stefan's constant is $5.67 \times 10^{-5} \mathrm{erg}$ $\mathrm{s}^{-1} \quad \mathrm{~cm}^{-2} \mathrm{~K}^{-4}$. Write down its value in SI units.
2. Name at least seven physical quantities whose dimensions are $M^{2} \mathbf{T}^{-2}$
3. If m, v and c respectively denote mass,speed and velocity of light, then in the equation $m=m_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{-1}{2}}, m_{0}$ has the dimensions of \qquad
4. State the number of significant figures in the following:
a) 0.007
b) $\mathbf{2 . 6 4 \times 1 0 ^ { 2 4 }}$
5. If $\left(\mathrm{P}+\frac{a}{v^{2}}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$, where the symbols have their usual meanings, then $\left(\frac{a}{b}\right)$ has a dimension of \qquad
6. The time of oscillation (t) of a small drop of liquid under surface tension (σ) Prove dimensionally that $\mathrm{t} \propto \sqrt{\frac{\rho r^{3}}{\sigma}}$.
7. A physical quantity Q is given by $Q=\frac{A^{2} B^{\frac{3}{2}}}{c^{4} D^{\frac{1}{2}}}$

The percentage error in A ,B ,C,D are 1\%, 2\% , 4\%, 2\% respectively. Find the percentage error in Q .
8. If $x=a t+b^{2}$, Where x is in metre and t in hour, What will be the unit of a and b
9. The wavelength associated with a moving particle depends upon its mass m, its velocity v and Planck's constant h.Show dimensionally the relationship between them.
10.Check whether equation $\mathrm{F} . \mathrm{S}=\frac{1}{2} \mathrm{mv}^{2}-\frac{1}{2} \mathrm{mu}^{2}$ is dimensionally correct, Where m is the mass of the body v is its final velocity,u its initial velocity, f is the force applied and S is the distance travelled.

